If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(2x=5-5)^2=9
We move all terms to the left:
x^2+(2x-(5-5)^2)=0
We add all the numbers together, and all the variables
x^2+(2x-0^2)=0
We get rid of parentheses
x^2+2x-0^2=0
We add all the numbers together, and all the variables
x^2+2x=0
a = 1; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*1}=\frac{0}{2} =0 $
| F(a)=9a^2+8 | | 2x^2-11x+152x2−11x+15=0 | | F(x)=9^2+8 | | 20/d=15 | | 7/x+1/2=14 | | (2x+22)(3x-2)=90 | | 5y+7=15y-14 | | –2v–20+6=2 | | z/1+5=21 | | 5y+74=15y-1 | | (9*(x*x)+63*x)/2=441 | | 5(x+7)^2-15=25 | | 2(2x+5)+3x+9=180 | | 15y-14=5y+7 | | 12t+16=64 | | 2x+11+2(3x+11)=180 | | 2(2x-1)+(3x+3)=180 | | 2(2x-1)+3x+3=180 | | |q-8|=15 | | 3x+x+(x-6)=119 | | 6y+(2y+5)=180 | | 4x+-7=5x-1 | | –2-7=x-37 | | 17x2=15x | | q/12+9=9 | | 5x10=6 | | 3x–1=4 | | -2(-6-8=-3)-6x+5 | | 5–1=2x+8 | | ก.5–1=2x+8 | | .5x-8.1=6.4 | | −12=−4 |